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Abstract 

  We theoretically study the relation between stripe domains at remanence 

and magnetic normal modes in a single crystal Co bar. We find different stripe patterns 

depending on field history and in each case the domain structure can be related to a soft 

mode that triggers a phase transition. The stripe domain structure when the external field 

is along the long axis of the bar is shown to be generated by a standing wave mode, 

which has the same spatial structure as the stripes. At all fields this mode has the lowest 

frequency of all the standing wave modes. This mode goes soft at a second order phase 

transition where the stripe domains emerge. For other directions of the field, the 

symmetry of soft modes is found to be consistent with the change in symmetry of the 

ground state and that the phase transition can be first order. An analytical model relating 

phase transitions and soft mode behavior is also briefly discussed.   

Introduction 
 Stripe domains are common phenomena observed in many different physical 

systems [1-4]. Landau and Lifshitz first predicted the existence of stripe domains in 

ferromagnetic samples based on energy minimization consideration, since the formation 

of stripe domains can reduce the surface charge [5]. It remains unclear, however, how a 

system evolves into a particular stripe domain structure.  

 Here we investigate this issue by studying the magnetic normal modes of a thin-

film cobalt bar with uniaxial anisotropy in the width direction of the bar, which is known 

to develop stripe domains at remanence [6]. In this paper, we first show that the stripe 

domain structure at remanence in such a system is not unique and depends on the field 



history. Hence energy minimization alone is not adequate to predict the exact stripe 

domains at remanence. To identify the dynamic origin of the stripe domains, we calculate 

the magnetic normal modes using micromagnetic-based technique [7, 8]. We focus on the 

simplest case in this paper when the external field is applied along the length of the bar. 

In this case, we find that one particular standing wave mode, that has the same spatial 

pattern as the stripe domains, always has the lowest frequency of all the standing wave 

modes, independently of the external field. This mode is found to go soft at a continuous 

phase transition and nucleates the form of the stripe domains. A brief description will be 

given for another two cases with the external field applied along the width direction of 

the bar. In addition, an analytical model will be briefly discussed about how the soft 

mode profile determines the change in magnetization at the onset of a phase transition. 

The critical exponent of the soft mode frequency is also derived.  

Results and Discussion 

 In our numerical studies, we apply two methods to calculate the magnetic normal 

modes. One method is based on micromagnetic simulations and Fourier transform[7]. 

The other method involves a dynamical matrix approach [8]. Both methods enable us to 

obtain the frequency and profile of the normal modes. 

 We study a single crystal hcp Co bar, 40 nm thick and 120 nm wide, with a 

uniaxial anisotropy along the width direction, and a length of either 792 nm or 936 nm. 

The material parameters used in calculations are the saturation magnetization Ms=1.4 x 

105 A/m, the exchange constant A = 3 x 10-11 J/m, and the uniaxial anisotropy constant 

Ku= 5.2 x 105 J/m3; all are typical values for epitaxial cobalt films. For such a system, we 

obtain different stripe domains for different field histories. Below we describe three 

processes for the 792 nm bar and the key outcomes. 

1) A large field is applied along the long axis of the bar. As the field is reduced, 

the bar breaks into 11 stripe domains. 

2) A large field is applied along the short axis of the bar, along the uniaxial 

direction. As the field is reduced and then made negative, the bar breaks into 5 

domains. If the magnetic field is then reduced to zero, the 5-domain state 

remains stable. 



3) A large field is applied at an angle to the short axis of the bar. As the field is 

reduced and then made negative, the bar breaks into 3 domains. Again, this 

state is stable at zero field. 

The three stripe domains at remanence are shown in Fig. 1. The fact that the stripe 

domain structure at remanence is not unique implies the failure of energy minimization to 

predict the exact domain structure at remanence. Using simulations to find the ground 

state energy of a bar with an arbitrary number of domains, we find that none of the three 

stripe domains listed above is at the lowest energy state. 

We now focus on the formation of stripe domains for the case that the external 

field is applied along the long axis of the bar. More detailed results are published in Ref. 

[9]. As the field is reduced, magnetization reversal is a complex process initiated at the 

particle ends. However, simulations on bars that differ only in length show that the 

domain size at remanence is independent of the bar length, indicating that the final state 

is a bulk-like phenomenon rather than an “end effect.” 

The frequencies of the normal modes give us additional insight into the nature of 

the phase transition. In this case, the bulk modes resemble standing wave like solutions. 

In Fig. 2, we plot the frequency of the standing wave modes as a function of the 

wavevector, q, for three cases: the long bar at kOeH 7= , the long bar at kOeH 6= , and 

the short bar at kOeH 6= . The important point is that the lowest frequency mode is 

always the one with 10430 −= nmq .  independent of length of the bar or the value of the 

field. This wavevector corresponds to a wavelength of about 146 nm. In both the long 

and short bar, we find that the average domain size is 72 nm. Since one wavelength 

should correspond to two domains, one wavelength would be 144 nm, in excellent 

agreement with the wavelength of the lowest-frequency standing wave mode. A 

“snapshot” of the out of plane component of the precessing magnetization for the lowest-

frequency mode is shown in Fig. 1a at kOeH 12=  to compare with the domain pattern at 

remanence where 0=H . Clearly, the wavelength of this mode closely matches the 

typical domain size observed in the 13-domain state found in the micromagnetic 

simulations. 

In Fig. 3 we plot the frequency of the lowest-frequency bulk mode (the one shown 

in Fig. 1a) as a function of field. For comparison, the frequency of the uniform mode is 



also shown. Although there are many other modes not shown in this figure, there is only 

one bulk mode that reaches zero frequency near kOeH 5= . Thus, in this geometry, the 

final state configuration is directly connected with a particular bulk mode that goes soft. 

Figure 3 also shows the evolution of an order parameter as a function of applied field. 

The squares in Fig. 3 are the maximum value of zM  in the cells in the central portion of 

the bar where z is the short axis; as such, it provides a convenient order parameter for the 

phase transition. Noting that the order parameter and the frequency of the lowest bulk 

mode extrapolate to zero at the same field and the identical symmetry between the mode 

profile and stripe domains, we claim that the origin of the stripe domains in this geometry 

is a soft magnon mode, and not the minimization of energy.   

 In two other cases with the field applied along the short axis, the bar breaks into 

either 3 or 5 domains. The difference here is that the magnetization goes through a 

discontinuous change at a critical field and thus a first order phase transition occurs. Soft 

modes at the critical fields are observed as well. More interesting, the symmetry of the 

soft modes is consistent with that of the change of ground states. The spatial profiles of 

the soft modes and the corresponding final ground states are shown in Fig. 1b and c. The 

detailed results will be published elsewhere [10]. In all three cases, soft modes are 

responsible for the phase transitions observed in this system.  

An analytical model based on the dynamical matrix approach provides a physical 

picture how the soft mode profile determines the magnetization profile after the 

symmetry break in a phase transition. In the dynamical matrix approach, for a given 

equilibrium magnetization, the normal modes are obtained by solving an eigen equation, 

with the eigenvalue proportional to the frequency and the eigenvector yielding the mode 

profile. The matrix elements of the eigen equation can be shown to be proportional to the 

Hessian matrix. Since the Hessian matrix also provides a measure of the change in energy 

around the equilibrium configuration, it is easy to see that if a soft mode exists, the 

energy of the system is invariant for a configurational change proportional to the eigen 

vector of the soft mode. Conversely, since these configurational changes produce no 

change in energy, they are directly related to an instability. In the case of thin-film 

samples, the eigen function can be simplified under the assumption that all ground states 

of the system lies in the film plane. At any phase transition, it can be shown that the 



change in magnetization just after the symmetry break must be proportional to the soft 

mode eigenvector. When the transitions are second order, the critical exponent of the soft 

mode frequency can be shown to be equal to ½. This conclusion thus applies for the 

formation of stripe domains in the case of external field along the long axis of the bar and 

other phase transitions reported in Ref. [11]. In first order phase transitions, the 

relationship of symmetry between the soft mode and change of ground states can be 

qualitatively understood by considering the energy behavior of the system near the 

critical field. At the critical field, the total energy of the system becomes a saddle point in 

the configuration space. So that again, at the onset of the transition, the change of 

magnetization is proportional to the soft mode eigenvector. The details of this model will 

be published elsewhere [12]. 

In summary, we have studied the dynamic origins of stripe domains in a Co bar. 

We find that soft modes are responsible for all the phase transitions observed in the 

system, whether first order or second order. We also have developed an analytical model 

to describe the relation between soft modes and phase transitions.    
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Figure 1 (color) Comparison between the profiles of modes that go soft at the phase transition points 
(up) and stripe domains at remanence (below) in three different cases: (a) external field applied along 
the long axis; (b) external field applied along the short axis; and (c) external field applied at an angle 
to the short axis. 
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Figure 2 Frequency as a function of wavevector for standing-wave modes in both the long (936 nm, 
squares and circles) and short (792 nm, triangles) bars and for two different magnetic fields. 
 
 



 
Figure 3 (color online) Frequency as a function of applied magnetic field for the lowest frequency 
bulk mode and the uniform resonance mode (right axis). The lefthand side shows the evolution of the 
“order parameter” zM  in the central region of the bar. 
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